Extremal Shift Rule for Continuous-Time Zero-Sum Markov Games

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling Techniques for Markov Games Approximation Results on Sampling Techniques for Zero-sum, Discounted Markov Games

We extend the “policy rollout” sampling technique for Markov decision processes to Markov games, and provide an approximation result guaranteeing that the resulting sampling-based policy is closer to the Nash equilibrium than the underlying base policy. This improvement is achieved with an amount of sampling that is independent of the state-space size. We base our approximation result on a more...

متن کامل

Sampling Techniques for Zero-sum, Discounted Markov Games

In this paper, we first present a key approximation result for zero-sum, discounted Markov games, providing bounds on the state-wise loss and the loss in the sup norm resulting from using approximate Q-functions. Then we extend the policy rollout technique for MDPs to Markov games. Using our key approximation result, we prove that, under certain conditions, the rollout technique gives rise to a...

متن کامل

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

This paper provides an analysis of error propagation in Approximate Dynamic Programming applied to zero-sum two-player Stochastic Games. We provide a novel and unified error propagation analysis in Lp-norm of three well-known algorithms adapted to Stochastic Games (namely Approximate Value Iteration, Approximate Policy Iteration and Approximate Generalized Policy Iteratio,n). We show that we ca...

متن کامل

Best Response Dynamics for Continuous Zero–sum Games

We study best response dynamics in continuous time for continuous concave-convex zero-sum games and prove convergence of its trajectories to the set of saddle points, thus providing a dynamical proof of the minmax theorem. Consequences for the corresponding discrete time process with small or diminishing step-sizes are established, including convergence of the fictitious play procedure.

متن کامل

Value Function Approximation in Zero-Sum Markov Games

This paper investigates value function approximation in the context of zero-sum Markov games, which can be viewed as a generalization of the Markov decision process (MDP) framework to the two-agent case. We generalize error bounds from MDPs to Markov games and describe generalizations of reinforcement learning algorithms to Markov games. We present a generalization of the optimal stopping probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dynamic Games and Applications

سال: 2015

ISSN: 2153-0785,2153-0793

DOI: 10.1007/s13235-015-0173-z